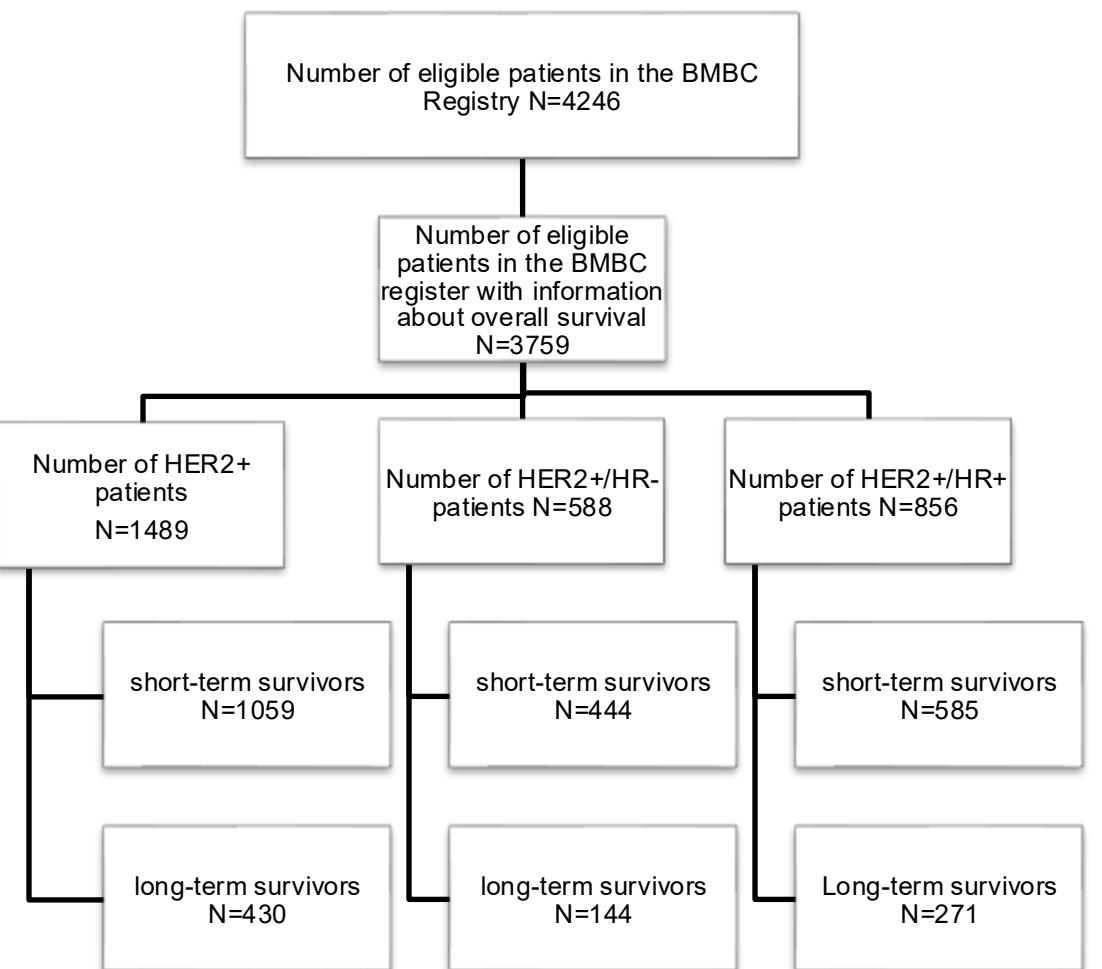


Long-term survival of HER2-positive breast cancer patients with brain metastases: final analysis of the Brain Metastases in Breast Cancer Registry (BMBC)

¹University Medical Center Hamburg-Eppendorf, Hamburg, Germany, ²Hannover Medical School, Department of Gynecology, Hannover, Germany, ³University Medical Center of the Johannes Gutenberg University Mainz, Germany, ⁴Institut für Versorgungsforschung in der Onkologie – Koblenz, Germany, ⁵Universitätsklinikum Ulm, Germany, ⁶Frauenärzte am Dom, Mainz, Germany, ⁷HELIOS Dr. Horst Schmidt Kliniken Wiesbaden, Germany, ⁸Agaplesion Diakonieklinikum Rotenburg, Germany, ⁹Oncologie, Hämatologie Ravensburg, Germany, ¹⁰SRH Wald-Klinikum GmbH, Germany, ¹¹Universitätsklinik Erlangen, Erlangen, Germany, ¹²Institute of Pathology, Philipps-University Marburg and University Hospital Marburg (UKGM), Germany, ¹³Klinikum der Universität München/Klinikum Großhadern, Germany, ¹⁴Universitätsklinikum Düsseldorf, Germany, ¹⁵German Breast Group (GBG) Forschungs GmbH, Neu-Isenburg, Germany, ¹⁶University Medical Center Zurich, Switzerland


P 352

Background

- The incidence of central nervous system (CNS) metastases in patients with breast cancer (BC) has increased over the past years¹
- Survival of the patients with CNS metastases is still unsatisfactory
- Up to 50% of patients with a metastatic HER2-positive BC develop CNS metastases
- Several studies have identified patient's characteristics associated with long-term survival in BC with CNS metastases
- Factors associated with a long-term survival in patients with a HER2-positive BC and CNS metastases have not been analyzed until now

Patients and Methods

The clinical data of patients diagnosed with CNS metastases of BC from the year 2000 onwards has been prospectively and retrospectively collected in the registry. Patients registered before July 1st 2024 were included. A total of 4246 patients were included in the analysis. 1,489 patients had a HER2-positive BC. Long-term survival was defined as overall survival (OS) from time of diagnosis of CNS to death in the upper third of the survival curve, resulting in a cut-off for patients with a short-term vs. long-term survival of < vs. \geq 25.92 months and a median OS of 50.9 months for the long-term survivors. Consequently, 430 patients were categorized as long-term survivors. Treatment modalities were compared between short-term and long-term survivors using the Fisher's exact or Pearson chi-squared (χ^2) tests. Univariate and multivariate logistic regression analyses were conducted to exploratively characterize the prognostic factors associated with long-term survival. All reported p-values were two-sided, and the significance level was set at 0.05. Confidence intervals (CIs) symmetrically covered 95%.

Results

- Among short-term survivors, the median age at BC diagnosis was 53.0 (range: 20.0-92.0) years, and the median age of diagnosis of CNS metastases was 58.0 years (range: 22.0-93.0). In contrast, long-term survivors had a median age at diagnosis of BC of 48.0 years (range: 24.0-78.0) and a median age of 52.0 years (range: 25.0-85.0) at time of diagnosis of the CNS metastases.
- Long-term survivors had significantly more frequently ER and/or PR positive tumor biology (ER+ and/or PR+ 65.3 vs. 56.9%, p=0.003), a better performance status (ECOG) at time of CNS metastases diagnosis (ECOG 0-1 81.0 vs. 56.3%, p<0.001), and a lower number of CNS metastases comparing to patients in the short-term survival group (n=1 BM 40.0 vs. 25.3%, p<0.001).
- Leptomeningeal metastases were significantly less common in long-term survivors (7.7 vs. 12.7%, p=0.005). Furthermore, long-term survivors had significantly less often extracranial metastases (ECM) at diagnosis of CNS metastases (72.6% vs. 82.5%, p<0.001).
- Among long-term survivors, a significantly higher rate of patients who had asymptomatic CNS metastases (27.0 vs. 20.9%, p=0.012) could be observed.
- The number of therapy lines in the metastatic setting as well as application of HER2 targeted therapies were significantly associated with a higher probability for long-term survival

Survival Analysis

- The median OS in HER2+/HR- long-term survivors was 49.2 months (95% CI 46.2-59.7) and was comparable with HER2+/HR+ long-term survivors (49.1 months, 95% CI 45.1-58.1) (Figure 1)
- In the multivariate analysis, younger age, HR+ status, better performance status, lower BM number as well as application of HER2-targeted treatment after BM diagnosis were significantly associated with long-term survival in a multivariate analysis (Table 1)

Table 1: Multivariate logistic regression in long-term vs. short-term survivors

Parameter	Category	Odds Ratio	95%-CI	p-value
AntiHER2 treatment after CNS metastases diagnosis	no	2.32	(1.58, 3.42)	<.001
	yes	2.32	(1.58, 3.42)	
Age at CNS metastases diagnosis	<60	.513	(.342, .768)	.001
	≥60	.513	(.342, .768)	
HR status at BC diagnosis	both ER and PgR negative	1.72	(1.16, 2.56)	.007
	ER and/or PgR positive	1.72	(1.16, 2.56)	
ECOG a CNS metastases diagnosis	ECOG 0-1	.495	(.321, .764)	.001
	ECOG 2-4	.495	(.321, .764)	
Number of CNS metastases	1	.763	(.471, 1.24)	.271
	2-3	.763	(.471, 1.24)	
CNS metastases Location: Meninges	≥4	.536	(.336, .856)	.009
	no	.629	(.312, 1.27)	
>= 2nd-line metastatic treatment before CNS metastases diagnosis	yes	.487	(.305, .777)	.003
	no	.487	(.305, .777)	
ECM at CNS metastases diagnosis	no	.826	(.513, 1.33)	.429
	yes	.826	(.513, 1.33)	
Chemotherapy after CNS metastases diagnosis	no	1.42	(.930, 2.17)	.104
	yes	1.42	(.930, 2.17)	

Figure 1: Overall survival in patients with HER2-positive BC and BM, according to HR status

Treatment modalities among patients with long-term survival vs short-term survival

Parameter	Category	Short-term survivors N=1059 N (%)	Long-term survivors N=430 N (%)	Overall N=1489 N (%)	p-value
AntiHER2 treatment before CNS metastases	no	397 (37.5)	162 (37.7)	559 (37.5)	0.953
	yes	662 (62.5)	268 (62.3)	930 (62.5)	
Trastuzumab after CNS metastases	no	887 (83.8)	240 (55.8)	1127 (75.7)	<.001
	yes	172 (16.2)	190 (44.2)	362 (24.3)	
Trastuzumab + Pertuzumab after CNS metastases	no	1052 (99.3)	413 (96.0)	1465 (98.4)	<.001
	yes	7 (0.7)	17 (4.0)	24 (1.6)	
Lapatinib after CNS metastases	no	900 (85.0)	303 (70.5)	1203 (80.8)	<.001
	yes	159 (15.0)	127 (29.5)	286 (19.2)	
T-DM1 after CNS metastases	no	944 (89.1)	260 (60.5)	1204 (80.9)	<.001
	yes	115 (10.9)	170 (39.5)	285 (19.1)	
Tucatinib after CNS metastases	no	1036 (97.8)	405 (94.2)	1441 (96.8)	<.001
	yes	23 (2.2)	25 (5.8)	48 (3.2)	
Trastuzumab Deruxtecan after CNS metastases	no	1044 (98.6)	392 (91.2)	1436 (96.4)	<.001
	yes	15 (1.4)	38 (8.8)	53 (3.6)	
Local treatment of CNS Metastases	Missing	0	0	0	<.001
	Surgery only	52 (5.8)	22 (5.3)	74 (5.7)	
	Radiotherapy (RTH) only	647 (72.6)	228 (55.3)	875 (67.2)	
	Surgery and RTH	192 (21.5)	162 (39.3)	354 (27.2)	
Missing	168	18	186		

Conclusions

- Our analysis of the large BMBC registry identified factors associated with long-term survival in patients with a HER2-positive BC and CNS metastases.
- The application of HER2-targeted therapies, age, HR status, ECOG performance status, and number of CNS metastases were significantly associated with long-term survival.
- Our analysis provides a substantiation for designing future (de)-escalation trials in order to optimize treatment regimens and integrate new therapeutic options in the management of patients with BC and CNS metastases.

References

- Call Dayan AE, Leone JP. Targeted Therapies for Breast Cancer Brain Metastases. Clin Breast Cancer. 2021 Aug;21(4):263-270. doi: 10.1016/j.clbc.2020.11.014. Epub 2020 Dec 1. PMID: 33384227.
- Rick JW, Shahin M, Chandra A, Dalle Ore C, Yue JK, Nguyen A, Yagnik G, Sagar S, Agha MK. Systemic therapy for brain metastases. Crit Rev Oncol Hematol. 2019 Oct; 142:44-50. doi: 10.1016/j.critrevonc.2019.07.012. Epub 2019 Jul 22. PMID: 31357143; PMCID: PMC6746616.
- Kennecke H, Yerushalmi R, Woods R, Cheang MC, Voduc D, Spears CH, Nielsen TO, Gelmon K. Metastatic behavior of breast cancer subtypes. J Clin Oncol. 2010 Jul 10;28(20):3271-7. doi: 10.1200/JCO.2009.25.9820. Epub 2010 May 24. PMID: 20498394. Kennecke H, Yerushalmi R, Woods R, Cheang MC, Voduc D, Spears CH, Nielsen TO, Gelmon K. Metastatic behavior of breast cancer subtypes. J Clin Oncol. 2010 Jul 10;28(20):3271-7.