

P129

Impact of TROP-2 and its cellular localization on prognosis of breast cancer in the GAIN cohort

Christina C. Westhoff¹, Sabrina K. Müller¹, Sabine Schmatloch², Rolf-Peter Henke³, Paul Jank¹, Akira Hattesohl¹, Wolfgang Janni⁴, Peter A. Fasching⁵, Frederik Marmé⁶, Thomas Karn⁷, Marcus Schmidt⁸, Volkmar Müller⁹, Michael Untch¹⁰, Christian Schem¹¹, Elmar Stickeler¹², Marion van Mackelenbergh¹³, Helmut Forstbauer¹⁴, Valentina Nekljudova¹⁵, Sibylle Loibl¹⁵, Carsten Denkert¹

¹Institute of Pathology, Philipps-University Marburg and University Hospital Marburg (UKGM)—Universitätsklinikum Marburg, Germany, ²Elisabeth Krankenhaus, Kassel, ³Klinikum Oldenburg, ⁴Uniklinik Ulm, ⁵Universitätsklinikum Erlangen, ⁶Medizinische Fakultät Mannheim, Universität Heidelberg, Universitätsfrauenklinik Mannheim, ⁷Goethe Universität, Frankfurt am Main, ⁸Universitätsklinikum Mainz, ⁹University Medical Center Hamburg-Eppendorf, Department of Gynecology, ¹⁰Helios Kliniken Berlin-Buch, ¹¹Mammazentrum Hamburg, ¹²Uniklinik RWTH Aachen, ¹³Universitätsklinikum Schleswig-Holstein, Klinik für Gynäkologie und Geburtshilfe, Schleswig-Holstein, ¹⁴GOSPL – Gesellschaft für onkologische Studien Troisdorf, ¹⁵German Breast Group, Neu-Isenburg

Background

TROP-2 is involved in regulating cancer growth and invasion in different tumour types. It is also a potent therapeutic target, being addressed by antibody drug conjugates (ADC)^{1,2}. However, the impact of TROP-2 expression and localization on breast cancer (BC) prognosis is yet unclear. This study aims at its evaluation in high-risk, nodepositive BC of the German adjuvant intergroup node-positive (GAIN) cohort³.

Patients and Methods

Tissue microarrays (TMAs) were generated from Formalin-fixed paraffinembedded pre-therapeutic surgical resection tissue (*n* = 1358, Figure 1) from the prospective adjuvant phase III GAIN-1 trial comparing two dose-dense regimens (epirubicin (E), paclitaxel (taxol; T), cyclophosphamide (C)) vs. EC-TX (capecitabine (X)) with or without Ibandronate). Immunohistochemical staining was performed with human TROP-2 antibody SP295 (Figure 2). Membranous and cytoplasmic expression of TROP-2 in invasive tumour cells was assessed as to proportion (in 5 % steps) and staining intensity in 4 categories. For membranous (m)TROP-2, a product score (IRS) of grouped percentage and staining intensity was generated. Cutoff Finder web application⁴ was used for identification of the best cutoff point according to disease-free survival (DFS) and overall survival (OS). For n = 996 patients, data on hormone receptor (HR), HER2 and Ki-67 status were available. The association of mTROP-2 and cytoplasmic (c)TROP-2 expression with molecular intrinsic subgroups, TNM stages, age, proliferation and HR status were evaluated (Table 1). Correlation with DFS and OS was evaluated with Kaplan Meier curves, log rank tests and Cox regression.

References

1. Bardia A et al. New Engl J Med 2019; 380(8):741–51. 2. Bardia A et al. New Engl J Med 2021; 384(16):1529–41 3. Möbus V et al. Ann Oncol 2017; 28(8):1803–10. 4. Budczies et al. PLoS One 2012; 7(12):e51862

Presented at: ESMO Breast Cancer Congress 2023 (May 11-13), Berlin, Germany COI: CCW reports funding for research purposes from Anneliese Pohl Stiftung without influence on contents of research.

Results

Conclusions

TROP-2 is commonly expressed in breast cancer with its cellular localization differentially affecting survival. Cytoplasmic expression \leq 70 % was associated with favorable pathologic features (G1/2, HR+), but also with HER2 negativity in the GAIN cohort. Clinical features (pT, pN) did not correlate with cTROP-2. These findings might be interesting for future risk assessments and need to be validated prospectively.

For 1186 TMA spots valid TROP-2 evaluation was available (Figure 1). The Cutoff Finder identified 70 % as best cutoff for cTROP-2 expression. cTROP-2 ≤ 70 % was significantly associated with prognostic factors including better grading and HR positivity, while cTROP-2 > 70 % was significantly associated with HER2 positivity (Table 1). DFS and OS in GAIN cohort and significant association with molecular subgroups are presented in Figure 3. In multivariate Cox regression analysis, cTROP-2 ≤ 70 % was associated with improved DFS in luminal/HER2- (hazard ratio (hr) 1.773 [95 % CI 1.182 – 2.660], p = 0.006) and luminal A-like tumours (hr 1.767 [95 % CI 1.127 – 2.770], p = 0.013). Interestingly, higher mTROP-2 expression (IRS > 3) was associated with better DFS and OS in HER2+/ HR any and HER2+/ HR+ patients (uni-/ multivariate (DFS HER+/ HR any (hr 0.561 [95 % CI 0.365 – 0.862], p = 0.008), DFS HER2+/ HR+ (hr 0.491 [95 % CI 0.290 – 0.832], p = 0.008), OS HER2+/ HR any (hr 0.496 [95 % CI 0.274 – 0.897], p = 0.020), OS HER2+/ HR+ (hr 0.396 [95 % CI 0.193 – 0.812], p =0.012)).

Hormon negative positive HER2 sta negative positive missing Molecul Lum/HEF HER2+ TNBC missing Grading G1-2 **G**3 missing T1-2 T3-4 missing N2-3 Ki67 **≤ 25 %** > 25 % missing **Histoloc** NST Other Therapy ETC EC-TX Ibandro TIL No TILs 1-10 % 11-25 % 26-50 % 51-60 % > 61 % missing PDL1+ i <1% 1 - 5 % 6 - 10 % 11 - 24 % 25 - 50 % missing PDL1+ t <1% 1 - 5 % 11 - 24 % 25 - 50 % missing

Table 1: Base

Paramet

eline chara	acteristics n (%)), <i>p</i> -value from	Fisher's exact or	^{- 1} Pearso
er	All (<i>n</i> = 1186)	cTROP-2 <= 70 %	> 70 %	<i>p</i> -value
e receptor s	status (HR)			< 0.001
	287 (24.2)	234 (81.5)	53 (18.5)	
	899 (75.8)	810 (90.1)	89 (9.9)	
atus				< 0.001
	855 (77.2)	770 (90.1)	85 (9.9)	
	252 (22.8)	204 (81)	48 (19)	
	79			
r subgrou	p			< 0.001
R2-	678 (61.2)	622 (91.7)	56 (8.3)	
	252 (22.8)	204 (81)	48 (19)	
	177 (16)	148 (83.6)	29 (16.4)	
	79			
	13			< 0.001
	601 (50 7)	554 (92 2)	47 (7 8)	
			47 (1:0)	
	584 (49.3)	489 (83.7)	95 (16.3)	
	1			
				1
	1040 (88)	915 (88)	125 (12)	
	142 (12)	125 (88)	17 (12)	
	4			
				0.716
	488 (41.1)	432 (88.5)	56 (11.5)	
	698 (58.9)	612 (87.7)	86 (12.3)	
				0.008
	912 (87.9)	812 (89)	100 (11)	
	125 (12.1)	100 (80)	25 (20)	
	149			
cal tumor	type		I	0.046 ¹
	924 (78)	802 (86.8)	122 (13.2)	
			0 (6 0)	
		122 (93.1)		
		120 (31.0)	(0. -)	0.592
	599 (50 5)	524 (87 5)	75 (12 5)	0.002
	587 (49.5)	520 (88.6)	67 (11.4)	
ate	1			0.048
	410 (34.6)	350 (85.4)	60 (14.6)	
	776 (65.4)	694 (89.4)	82 (10.6)	
				0.003 ¹
	354 (31)	319 (90.1)	35 (9.9)	
	464 (40.6)	421 (90.7)	43 (9.3)	
	241 (21.1)	196 (81.3)	45 (18.7)	
	56 (4.9)	47 (83.9)	9 (16.1)	
	21 (1.8)	17 (81)	4 (19)	
	6 (0.5)	6 (100)	0 (0)	
	44			
nmune cell	S			0.005
	1051 (93.3)	932 (88.7)	119 (11.3)	
	38 (3 4)	31 (81 6)	7 (18 4)	
	21 (1 0)	14 (66 7)	7 (18 <i>Δ</i>)	
	14 (1 2)	10 (71 /)	Δ (28 G)	
	ן די (ו. <i>ב</i>) כ (ח כ)	3 (100)		
	50			
moreell	JA			0.004.1
	1100 (00 4)	077 (00.4)	100 (11 0)	0.021
	1109 (98.4)	ອາາ (88.1)	132 (11.9)	
	14 (1.2)	11 (78.6)	3 (24.4)	
	3 (0.3)	2 (66.7)	1 (33.3)	
1	1 (0.1)	0 (0)	1 (100)	
	59			

This presentation is the intellectual property of the author/presenter. Contact them at publications@gbg.de for permission to reprint and/or distribute.