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The Intergroup Sentinel Mamma (INSEMA) study as well as other ongoing studies aim at safe de-
escalation of axillary surgery, which is highly desirable to reduce side effects such as
lymphedema1. Nevertheless, it would be helpful to obtain new biomarkers that convey the same
prognostic information as sentinel lymph node (SLN) status.
As known from classical histopathology, primary breast tumor tissue exhibits features such as
loss of differentiation compared to the original, glandular structure and increased cell
proliferation, which correlate with aggressiveness of tumor growth and might as well correlate
with tumor spread into the lymph nodes.
As shown by numerous studies2, such features can be extracted from hematoxylin and eosin
(H&E)-stained breast cancer tissue sections using deep learning (DL)-based image analysis and
can be used to generate digital prognostic tools.
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Background  Results

Cohorts and patients

To train an image analysis model to predict SLN status, we used cases from the INSEMA standard
arm (n=762) and a cohort from the Women’s Clinic in Mannheim, Germany (n=150). For
INSEMA, we used a segmentation algorithm that we had trained on part of the The Cancer
Genome Atlas (TCGA) breast cancer cohort3 to exclude slides where this algorithm did not detect
enough tumor-containing tiles. The final image analysis model was tested on a holdout INSEMA
set (n=381) and on the higher risk TCGA cohort3 (n=650). Vice versa, we trained a model on
TCGA whole slide images (WSIs) and tested it on the other cohorts. For the clinical classifier, we
used the Ki-67 values and pT stages of the Mannheim cohort. See Table 1 for cohort
characteristics (ER: estrogen receptor, PR: progesterone receptor).

Model design and training

We trained a DL image analysis model on H&E-stained WSIs of primary breast tumors. This
model was based on a Resnet50 Convolutional Neural Network (CNN) architecture pre-trained
with ImageNet. The entire histological images were first tessellated into smaller patches, which
were processed individually. For training, the INSEMA training set was divided into folds and
training was performed by 5-fold cross-validation (Figure 1). The Mannheim set was
subsequently used for hyperparameter tuning. We used test time augmentation (TTA) to
improve model generalization.

For inference, a probability score was assigned to each tile of a slide. This score was considered
SLN positive if the CNN output was higher than 0.5 and the predictions for all tiles were
averaged to obtain a slide level prediction. Training and inference were implemented in Python.
To generate the clinical classifier, we fitted a logistic regression, where we could also integrate
the model output as an additional variable.

Statistics

We report the mean Area under the Receiver Operating Characteristic (AUROC) curve as metric.
95% confidence intervals (95%CIs) were generated by bootstrapping (1000x). Calculations were
performed in Python 3.7.7 extended with the library SciPy.

Figure 2. Internal and external performance of the generated models. A Internal cross-validation performance of the INSEMA-trained DL
model. B Performance of the INSEMA-trained DL model on the INSEMA hold-out test set (blinded analysis). C Performance of the INSEMA-
trained DL model on the TCGA cohort. D Performance of a TCGA-trained DL model on the INSEMA test set. E Performance of the clinical model
on INSEMA. F Performance of the combined model on the INSEMA hold-out set. Mean ROC curves are shown in orange, corresponding 95%
CIs in grey.

Conclusions

In contrast to known clinical risk factors for lymph node positivity such as
pathological tumor stage and Ki-67, our image analysis algorithms trained
on H&E stains of the primary tumors from INSEMA or TCGA were unable
to predict sentinel status, although the technique was previously
employed successfully for other tasks. This may suggest a lack of
detectable systematic histological differences by lymph node status in
these cohorts.

As in real life, both cohorts are dominated by ER-positive breast tumors,
and the INSEMA cohort in particular is fairly homogenous also with
respect to tumor grading. Still, even for INSEMA, pathological tumor size
and cell proliferation were useful factors to predict SLN status. Of note,
using our current pipeline, tumor size is not detected in the image
analysis model, although high cell proliferation, which may in turn lead to
increased tumor sizes, might be seen.
The finding that our image analysis algorithm failed to properly predict
lymph node status, together with the observation that tumor size was the
best predictor of SLN status, may argue that tumor spread into the lymph
nodes is mostly a stochastic process driven by the total number and local
spread of cancer cells in these cohorts.
One limitation of our approach may be, however, that by averaging
probability scores across all tiles generated from a tumor, we don’t fully
take into account that tumors may be heterogeneous and may contain
small areas with a high propensity for tumor cell spread. Attention-based
methods could be tested to address this problem. However, considering
the negative results so far, in our experience, it is unlikely that this would
be sufficient to yield an accurate predictor of SLN status. Moreover, in
other studies where we employed very similar approaches, we managed
to predict lymph node status for prostate and colorectal cancer,
demonstrating that this is feasible in principle4,5.

Thus, DL-based WSI analysis may not be a good strategy to replace
sentinel node assessment for breast cancer patients, especially in low- to
intermediate-risk, hormone receptor-positive breast cancer.
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Table 1. Descriptive characteristics of the 4 data sets from 3 independent cohorts employed in the study.

Table 1 shows a comparison of relevant tumor characteristics across the different data sets used for training and testing. INSEMA and Mannheim were
similar, whereas TCGA was a higher-risk cohort.

Patients and Methods  

INSEMA trial is supported by German Cancer Aid (Deutsche Krebshilfe, Bonn, Germany), Grant 
No. 110580 and Grant No. 70110580 to University Medicine Rostock. The TPI project was funded 

by the German Federal Ministry of Health (2519DAT712) to Titus J. Brinker.

During training, the image and the clinical model yielded AUROCs of
approximately 0.65 on INSEMA training cohort and of 0.62 on the
Mannheim cohort, respectively (Fig. 2A and data not shown). However,
performance of the image model was random on the INSEMA
(determined by blinded assessment) and TCGA BRCA test sets (Fig. 2 B,
C). The image model trained on TCGA also yielded random performance
on the INSEMA and Mannheim cohorts (Figure 2D and data not shown).
The clinical classifier, whose performance was dominated by tumor size,
retained an AUROC of about 0.62 on the INSEMA set. Inclusion of the
image classifier output in the logistic regression did not improve
performance on INSEMA and yielded a numerically worse performance
(AUROC of approx. 0.61, Fig. 2 E,F).

Figure 1. Cross-Validation Procedure. The INSEMA training set was divided in 5 folds and 5
models were trained using 4 folds as training data and the remaining fold as validation fold.
Performances of these models were then averaged.

characteristic n (%) INSEMA training (n=762) INSEMA hold-out (n=381) Mannheim (n=150) TCGA (n=650)

ER/PR status

ER/PR positive 752 (98.7) 374 (98.16)  150 (100) 467 (71.85)

ER/PR negative 10 (1.31) 7 (1.84) 0 (0) 139 (21.38)

unclear 0 (0) 0 (0) 0 (0) 44 (6.77)

HER2 status

HER2 positive 37 (4.86) 18 (4.72) 0 (0) 108 (16.62)

HER2 negative 725 (95.14) 363 (95.28) 150 (100) 454 (69.85)

unclear 0 (0) 0 (0) 0 (0) 88 (13.54)

grading

G1 270 (35.43) 139 (36.48) 0 (0) n.a.

G2 461 (60.50) 233 (61.15) 150 (100) n.a.

G3 31 (4.07) 9 (2.36) 0 (0) n.a.

pT stage

pT0 0 (0) 0 (0) 2 (1.33) 0 (0)

pT1 590 (77.43) 301 (79.00) 84 (56) 182 (28.00)

pT2 168 (22.05) 77 (20.21) 64 (42.67) 360 (55.38)

pT3 4 (0.52) 2 (0.52) 0 (0) 88 (12.54)

pT4 0 (0) 1 (0.26) 0 (0) 20 (3.08)

SLN positive 99 (12.99) 50 (13.12) 22 (14.67) 357 (54.92)
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