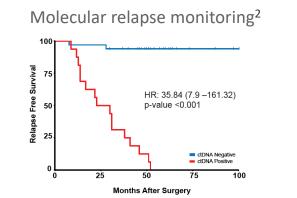
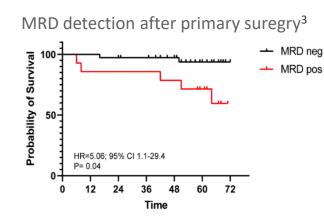


Detection of circulating tumor DNA following neoadjuvant chemotherapy and surgery to anticipate early relapse in ER positive and HER2 negative breast cancer: Analysis from the PENELOPE-B trial

Nicholas Turner, Frederik Marmé, Sung-Bae Kim, Hervé Bonnefoi, Jose Angel García-Sáenz, Antonio Antón Torres, Harry Bear, Hans Tesch, Mireia Melé Olivé, Nicole McCarthy, Josefina Cruz Jurado, Seock-Ah Im, Yuan Liu, Zhe Zhang, Karsten Weber, Bärbel Felder, Valentina Nekljudova, Toralf Reimer, Carsten Denkert, Sibylle Loibl

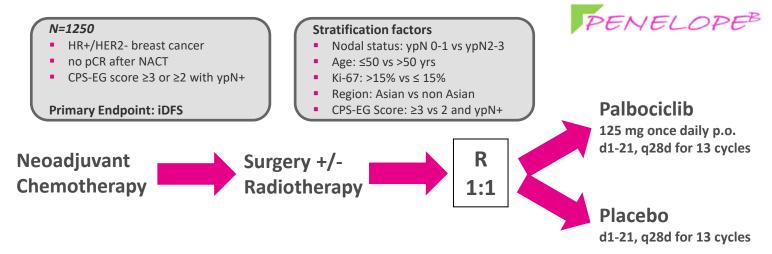
Nicholas Turner has received advisory board honoraria from Astra Zeneca, Lilly, Pfizer, Roche/Genentech, Novartis, GlaxoSmithKline, Repare therapeutics, Relay therapeutics, Zentalis, Gilead, Inivata, Guardant, Exact Sciences, and research funding from Astra Zeneca, Pfizer, Roche/Genentech, Merck Sharpe and Dohme, Guardant Health, Invitae, Inivata, Personalis, Natera.




Background – ctDNA in early breast cancer

 Tumors release circulating tumor DNA (ctDNA) into the circulation

- Detection of ctDNA in follow-up anticipates future relapse with high accuracy^{1,2}
- Limited data suggest detection of molecular residual disease immediately after surgery
- Potential use of ctDNA in selection of adjuvant CDK4/6i unclear



^{1.} Garcia-Murillas *et al* STM 2015, 2. Coombes *et al* CCR 2019, 3. Garcia-Murillas SABCS 2021

All patients received concomitantly endocrine therapy according to local standards.

Samples for ctDNA analysis:

Baseline Cycle 7

PenelopeB ET + Palbociclib/Placebo

EoT

PenelopeB ET + Palbociclib/Placebo

- To assess the potential of ctDNA analysis to predict future clinical relapse of patients enrolled in the PENELOPE-B trial
- To assess the potential role of sequential ctDNA analysis, ctDNA dynamics, in assessing future clinical relapse
- To assess whether a full analysis of baseline samples is indicated to assess whether palbociclib has benefit in ctDNA positive patients

- Patients endocrine naïve at the time of study entry were selected (129 of 1250)
- Biomaterial was available and ctDNA analysis was performed for 83 patients
 - 78 patient successful determinations at baseline
 - ctDNA analysis set was representative of the overall endocrine naïve group, with median follow-up of 42.9 months
- 210 plasma samples were collected in Streck tubes and processed
- Association of ctDNA with invasive disease-free survival (iDFS) and distant metastasisfree survival was analysed using Cox proportional hazard models.

ctDNA analysis methods

A tumor sample was exome sequenced, and up to 48 tumor variants were tracked in plasma using error-corrected sequencing for ctDNA detection (RaDaR assay).

Step 1 Patient's tumor

sample (FFPE) is sent to the NeoGenomics laboratory

Step 2

Patient's tumor DNA is sequenced to determine the tumor's unique mutation profile

Step 3

A personalized RaDaR panel is designed for the patient

Step 4

After initial panel design, ctDNA is tested using blood samples and the patient's custom RaDaR panel

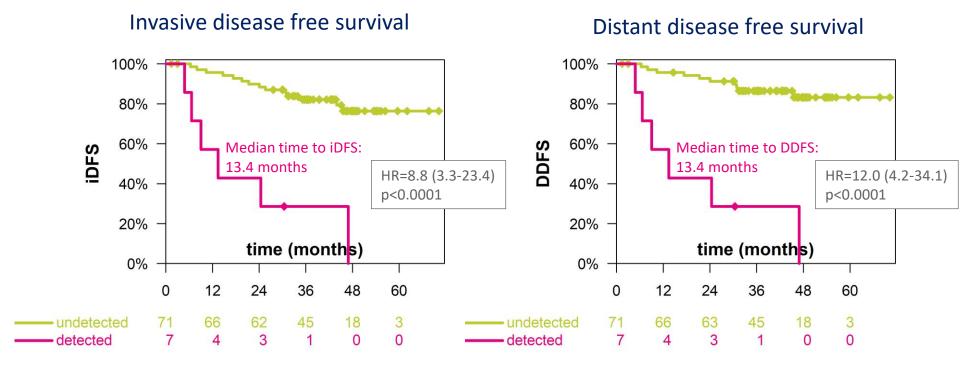
Step 5

Report is generated

ctDNA detection

- Baseline ctDNA detection 9% (7/78) patients
- Of patients undetected at baseline 5% (3/66) had ctDNA detected in later samples
- Of patients detected at baseline, 29% (2/7) became undetected in later samples

n	baseline	before cycle 7	EoT	Dynamics classification
48	undetected	undetected	undetected	all undetected
8	undetected	undetected		all undetected
7	undetected		undetected	all undetected
5	undetected			Not classified (one sample)
1	detected	undetected	undetected	becoming undetected
1	detected	undetected		becoming undetected
2	undetected	undetected	detected	becoming detected
1	undetected	detected	detected	becoming detected
2	detected		detected	all detected
3	detected	detected	detected	all detected



Results – baseline ctDNA detection

Results – baseline ctDNA detection

Multivariable analysis:

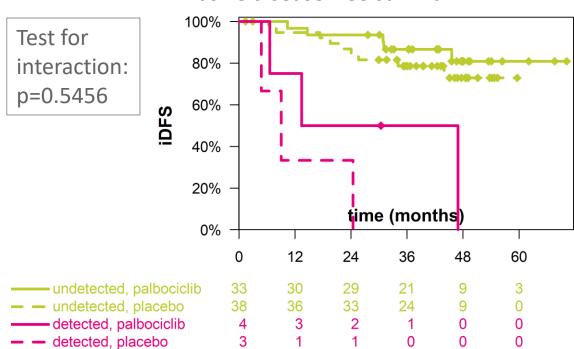
Invasive disease free survival

variable	comparison	HR	Р
ctDNA at baseline	detected vs undetected	6.47 (2.19-19.12)	0.0007
Ki-67	>15% vs ≤15%	1.90 (0.70- 5.14)	0.2054
урТ	ypT3-4 vs ypT0-2	2.03 (0.75- 5.52)	0.1644

Distant disease free survival

variable	comparison	HR	Р
ctDNA at baseline	detected vs undetected	10.93 (3.47-34.48)	<0.0001
Ki-67	>15% vs ≤15%	1.17 (0.37- 3.74)	0.7875
урТ	ypT3-4 vs ypT0-2	1.96 (0.63-6.11)	0.2434

ctDNA analysis dominated multivariable analysis

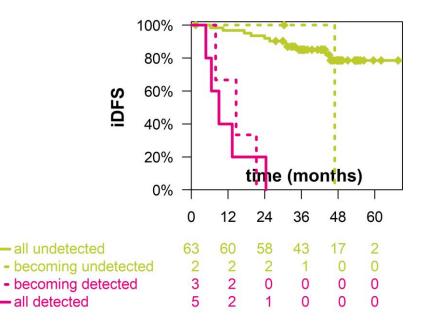


Results - baseline ctDNA detection

Invasive disease free survival

Split by treatment allocation

Groups too small to draw conclusions



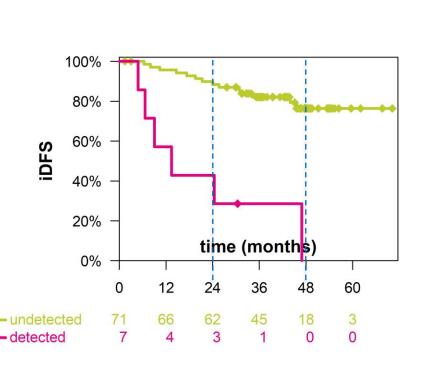
Results – ctDNA dynamics

Invasive disease free survival

iDFS by ctDNA dynamic groups

Patients with undetected baseline ctDNA, who become positive during treatment have poor outcome

Analysis limited by small groups



Limitations of baseline ctDNA analysis

'Sensitivity' for relapse analysed in time windows

Higher sensitivity (49%) for relapses within 12 months

Low/Moderate sensitivity for early relapses within 24 months (36% of currently observed)

Very low sensitivity for relapses >48 months (relapses not yet observed, but will occur with longer follow-up)

Analysis limited by follow-up

- Detection of ctDNA following neoadjuvant chemotherapy, and surgery, is associated with a very high risk of early relapse suggesting limited efficacy of adjuvant endocrine therapy
 - Studies of clinical imaging and experimental therapy are warranted for these patients
- 'Sensitivity' for future relapse is imperfect, in particular for later relapses, in patients who
 had prior neoadjuvant chemotherapy and surgery
 - Response to prior neoadjuvant chemotherapy may reduce ctDNA detection rates
 - Sequential testing improves 'sensitivity' for relapse
- Although Signatera ctDNA analysis has been approved by Medicare, use is likely not appropriate in deciding whether to give adjuvant CDK4/6 inhibitor in patients otherwise eligible, after neoadjuvant chemotherapy

Acknowledgement

All patients and their families and all participating sites

Cooperating partners

GBG

Collaborating study groups

Members of the Subboard GBG and AGO-B



This study was conducted as a collaboration between GBG and Pfizer. GBG is the study sponsor.

funded the Penelope-B study and provided study drug.

Data management: Christiane Praetor

Keyur Mehta

Medical Team: Sabine Seiler

Johannes Holtschmidt

